1. トップ
  2. 恋愛
  3. トンネル効果とは「別の世界線へ引っ越す」ことだったのかもしれない

トンネル効果とは「別の世界線へ引っ越す」ことだったのかもしれない

  • 2026.2.6
トンネル効果とは「別の世界線へ引っ越す」ことだったのかもしれない
トンネル効果とは「別の世界線へ引っ越す」ことだったのかもしれない / Credit:川勝康弘

本当は越えられないはずの壁を、こっそりすり抜けてしまう粒子がいます。

教科書では「量子トンネル効果」として紹介される有名な現象ですが、なぜそんな“ずる”が許されるのかについては、じつは今でも物理学者たちのあいだで議論が続いています。

そんな中で、モロッコのムハンマド5世大学理学部(UM5R)で行われた研究によって、このトンネル効果を「宇宙がたくさんの並行世界に枝分かれし、粒子が通り抜けた世界と通れなかった世界が同時に生まれる現象」としてとらえ直そうとする新しい研究が発表されました。

また研究ではトンネルが起きる「確率」とは、そんな世界線への行きやすさを示す「世界線の太さ」や「世界線の“重さ”」のようなものとして考えられることが示されています。

さらに、手のひらサイズの超伝導回路で観測されたマクロな量子トンネル現象とつなげることで、「世界が二股の現実に分かれきるまでの時間」はおよそ100ピコ秒程度だと見積もっており、私たちの日常の背後で世界線ガチャがとんでもないスピードで回り続けている可能性を示唆しています。

本当にトンネル効果は“別の世界線への引っ越し”だと言えるのでしょうか?

研究内容の詳細は2026年1月25日にプレプリントサーバーである『arXiv』にて発表されました。

目次

  • トンネル効果は応用が進んでいるのに実はよく分からない
  • 「トンネル確率=トンネル済み世界の重さ」という発想
  • 世界線の物語があると、量子技術の未来が少しだけ見えやすくなる

トンネル効果は応用が進んでいるのに実はよく分からない

トンネル効果は応用が進んでいるのに実はよく分からない
トンネル効果は応用が進んでいるのに実はよく分からない / Credit:川勝康弘

「物理の授業で『本来は越えられないはずの山を、粒がトンネルを掘って抜けてしまう』なんて話、聞いたことありませんか。

先生は真面目な顔で説明しているのに、こっちは心の中で『それ、ただのチートじゃん…』と思ってしまうあの感じです。

テスト前には式だけ覚えて乗り切れても、なぜそんな“壁抜け”が起きるのかまでは、モヤモヤしたまま終わってしまいがちです。

でも実は、そのモヤモヤの正体は、研究者たちにとってもずっと気になってきた問題でした。

現在の教科書的な説明(コペンハーゲン解釈など)では、1つの粒子は空間にぼやけた確率の雲として存在しており「壁があって入れないはず」の領域にも、確率の雲がじわっとにじみ出ることで、壁の向こう側で粒子がみつかるのが「トンネル効果」であると考えられています。

現実の世界でも、共鳴トンネルダイオード(とても高速な電子部品)やトンネル電界効果トランジスタ、走査型トンネル顕微鏡(原子をなぞる顕微鏡)、さらには放射性崩壊や核反応(原子力にも関わる反応)など、20世紀の技術を支える大事な働き者になっています。

とはいえ『式を計算すれば確率は出るし技術的な応用も実現している』けれど、『実際には何が起きているの?』という問いは残ったままです。

粒子は本当に壁の中を“通過”しているのか、それとも別の説明の仕方があるのか?

そこで登場するのが、もう一つの解釈「エヴェレットの多世界解釈」です。

この考え方では、「観測した瞬間に波が一つの結果に崩れる」という従来のイメージを捨てて、測定のたびに「こうなった世界」「別の結果になった世界」といった、たくさんの枝に分かれていくと考えます。

どの枝も同じくらい“本物の世界”で、私たちはその中の一本の世界線に自分がいる、と感じているだけだとみなします。

ここでいう「測定」は、白衣を着た研究者が装置をカチッと動かすときだけを指しているわけではありません。

もっとずっとささやかな出来事――空気の分子が粒子にぶつかること、壁からゆらいだ光が当たること、テーブルを通じてほんのわずかな振動が伝わること――そうしたありふれた相互作用が、すべて“小さな測定”として働きます。

量子の世界では、環境そのものが巨大な測定装置で、私たちが見ていないあいだにも、粒子たちは環境との出会いを通して、ひっそりと世界を枝分かれさせ続けているわけです。

たとえば、壁に向かって飛んでくる電子を想像してみてください。

古典力学なら、「跳ね返る」か「ぶつかって止まる」かしかありません。

でも量子力学では、電子は波でもあり、エネルギーが足りなくても“トンネル効果”で壁をすり抜ける可能性が残されます。

多世界的に言い直すなら、「反射して戻ってくる世界」と「壁をすり抜けて向こう側に現れる世界」が同時に存在し、その両方に、それぞれ“未来の自分たち”が住んでいる、ということになります。

今回の論文の著者は、この多世界解釈の立場に立ち、「量子トンネル効果を“反射した世界線”と“トンネルした世界線”への枝分かれとして扱い直すと、何が見えてくるのか?」を徹底的に追いかけさ「トンネルする確率は、その“トンネル済み世界線の太さ”で説明できないか」「トンネル時間は、世界が分かれきるまでの時間として定義し直せないか」とまで踏み込みます。

「トンネル確率=トンネル済み世界の重さ」という発想

「トンネル確率=トンネル済み世界の重さ」という発想
「トンネル確率=トンネル済み世界の重さ」という発想 / Credit:川勝康弘

世界が枝分かれる時間なんて、本当に考えられるのでしょうか?

答えを得るために研究者は、ふつうの量子トンネル現象を多世界解釈の言葉にひとつひとつ翻訳していきました。

最初にやったのは、よくある「壁と粒子」の設定を使った、ふつうの量子トンネル計算です。

粒子が持つエネルギーより高い壁を用意すると、本来なら絶対に向こう側には行けませんが「トンネル効果」によって壁の先に出現する粒子が出てきます。

今回の論文では、この粒子と壁に加えて「観測者」と「まわりの環境」もいっしょに考えます。

多世界解釈では、粒子だけでなく、観測する人や測定装置もまとめて大きな「波」として表します。

ふつうは「一個の粒子がトンネルする確率」として考えますが、多世界の視点では「トンネルに成功した世界が、全部の世界の中でどれくらいの割合を占めているか」という量に置き換えられます。

著者は、宇宙全体の波の中にある無数の世界のうち、「反射した世界」と「トンネルした世界」をグループ分けし、「トンネル世界」の塊の“重さ”の合計を、トンネル確率とみなします。

ここで出てくるのが「枝の重み」という概念です。

枝の重み(ある世界線の太さのようなもの)は、「その世界がどれだけ“ありそうか”」を表す数で、ふつうの量子力学で言う「確率」に対応します。

著者は、この枝の重みを足し合わせると、ちょうど教科書で計算するトンネル確率と同じ値になることを示します。

つまり、「トンネルする確率は、トンネルした世界線たちの太さの合計だ」と言い換えられるわけです。

次に気になってくるのが「トンネル時間」です。

トンネル時間は、「トンネルに『時間』をどう割り当てるか」という定義の問題として扱われており、よく使われる設定では、トンネル効果が起こる時に粒子が「壁の厚み」ぶんを通過するときに必要とする時間と考えられています。

コラム:トンネル時間とは何か?
壁に向かって真っすぐ進んでいた粒子が越えられない壁の向こうに出現してしまうのがトンネル効果ですが、壁の入り口と出口の間の領域にも「距離」があります一方で、トンネル効果が起こると、厚い壁でも見かけ上は“ほとんど同じ時間”で抜けてしまうように見えるのも確かです(波束のピーク到達などでそう見えることがある)。ただこのとき、「では粒子は壁の中をゼロ秒で通り抜けたのだ」とストレートに解釈してしまうと、A地点からB地点までの移動を考えたときに、あたかも粒子が光より速く進んだかのように見えてしまいます。たとえば、A地点からB地点までの距離が10光年で、その途中に1光年の厚さの壁がある状況を想像してみてください。本来なら、A地点からB地点までの到達時間は「10光年ぶんの光の飛ぶ時間」より短くなってはいけません。ところがトンネル効果で壁の中だけを「1光年ぶんワープした」と特別扱いしてしまうと、「A地点からB地点までの全体の時間が、1光年ぶんだけ削れてしまった」と読めてしまい、その結果、見かけ上は光より速い移動を許してしまうのです。そこで現在では、「トンネル時間」というものを目的に応じて設定するというスタンスが一般的になっています。たとえば壁の領域に粒子が平均してどれくらいの時間“居た”ことになるかを表す量は、比較的素直で扱いやすい指標です。このような定義を使えばトンネル時間は有限の値としてきちんと扱うことができ、相対性理論(光より速い情報伝達は起きない)とも矛盾しないように解釈できます。

しかし著者は「それとは別の見方がある」と論じます。

「反射世界」と「トンネル世界」が、環境とのやりとりによって完全に区別できるようになるまでの時間──つまり「枝分かれが完了するまでの時間」に注目します。

このときカギになるのが、「枝分かれエネルギー」と呼ばれる量です。

ざっくり言うと、「反射側の世界」と「トンネル側の世界」に割り当てられたエネルギーの“重みの差”で、その差が大きいほど、枝分かれは短い時間で済みます。

著者は、この枝分かれエネルギーと時間のあいだにある関係を使って、「枝分かれ1回あたりに必要な時間」と、それが何回積み重なれば“別々の世界”として完全に分かれるか、という形でトンネル時間を定義し直します。

一本だった道が、ゆっくり重なりが薄れて徐々に二又に分かれていく様子を思い浮かべてください。

そして「世界分岐の進行が行われる際の最小の時間単位」を取り出し、その最小単位がどれくらい積み重なったら『もう完全に跳ね返り世界とトンネル済み世界に分かれきったね』と言えるかを考えた訳です。

そして、この“何コマぶん積み重なったか”という数が分岐イベント数で、世界が環境と何度もぶつかり合いながら少しずつ別々の道すじになっていく回数を表している指標としました。

これまでの議論では、「粒子がいつ壁を通り抜けたか」という“移動時間”をどう定義するかで争ってきました。

しかし多世界の視点では、「反射世界」と「トンネル世界」が、環境とのやりとりによって完全に区別できるようになるまでの時間──つまり「枝分かれが完了するまでの時間」に注目します。

電子が壁にさしかかり、反射波と透過波のどちらの可能性もまだ重なりあっているあいだ、宇宙全体の状態は、どちらの物語にもまたがった“あいまいな下書き状態”のようなものです。

そこに環境との相互作用がひとつ、またひとつと積み重なっていくにつれて、「反射した履歴」を持つ世界と「トンネルした履歴」を持つ世界は、少しずつお互いに別れていきます。

やがてそれぞれの世界の中で、環境も観測者も、「あ、こっちでは反射が起きたことになっている」「こちらの世界線では、ちゃんとトンネルが成功している」と、歴史を確定させていきます。

このときカギになるのが、「枝分かれエネルギー」と呼ばれる量です。

ざっくり言うと、「反射側の世界」と「トンネル側の世界」に割り当てられたエネルギーの“重みの差”で、その差が大きいほど、枝分かれは短い時間で済みます。

著者は、この枝分かれエネルギーと時間のあいだにある関係を使って、「枝分かれ1回あたりに必要な時間」と、それが何回積み重なれば“別々の世界”として完全に分かれるか、という形でトンネル時間を定義し直します。

ここまで聞くと、「理屈はそれっぽいけど、結局数字はどうなるの?」というツッコミが入りそうです。

そこで著者は、2025年のノーベル物理学賞で表彰された、超伝導回路でのマクロ量子トンネル実験の典型的な値を使います。

超伝導回路(とても低い温度で電気抵抗がほぼゼロになる特別な回路)では、たくさんの電子がひとつの大きな波のように振る舞い、回路の中の「エネルギーの谷」からまとめてトンネルすることができます。

このときの温度は10ミリケルビン前後(絶対零度にかなり近い極低温)で、回路の振動の速さも、とても高い周波数だと知られています。

著者は、こうした実験でよく使われる温度や周波数の目安を、自分の分岐モデルに代入していきます。

環境温度が十分に低くなると、まわりからのノイズはほとんどなくなり、世界分岐に必要なイベント数は「せいぜい一回プラスちょっと」くらいまで下がると考えます。

つまり、「世界が枝分かれるために必要な最低限の一歩」だけが残り、その一歩ぶんの分岐時間がそのままトンネル時間に近づいていく、というイメージです。

このときの分岐時間は、およそ百ピコ秒、つまり一兆分の一秒が1ピコ秒なので、その100倍くらいと見積もられます。

そしてノイズ分を少し足し合わせると、世界がきちんと「跳ね返り組」と「トンネル組」に分かれきるまでの時間は、およそ100ピコ秒以上(1ピコ=1兆分の1秒)と結論づけています。

ある意味で、超伝導のマクロ量子トンネル実験は、「電子の塊がトンネルした時間」を測っているだけでなく、「現実がどのくらいの速さで増えていくか」を測るストップウォッチ、とも読めてしまうのです。

世界線の物語があると、量子技術の未来が少しだけ見えやすくなる

世界線の物語があると、量子技術の未来が少しだけ見えやすくなる
世界線の物語があると、量子技術の未来が少しだけ見えやすくなる / Credit:Canva

今回の研究では、「量子トンネル効果は、粒子がこっそり壁をすり抜けているのではなく、『世界のほうがトンネル済み世界と反射世界に分かれている』と考えても、ちゃんと従来の計算と矛盾しない」という見方が提案されています。

さらに、超伝導回路で起きるマクロ量子トンネル現象をこの枠組みで読み替えると、「世界がその二つの現実に分かれきるまでの時間」は、およそ百十ピコ秒以上、つまり一兆分の一秒が1ピコ秒なので、その百十倍以上だ、という“世界分岐タイマー”まで提案されています。

著者は、「トンネル確率はトンネルした世界の枝の重みの合計として理解できる」「トンネル時間は、分岐イベントのデコヒーレンス(重ね合わせがほどけること)時間を積み重ねたものだ」というニュアンスにて、あえて物語的な言い回しを使ってまとめています。

ここでいう枝の重みとは、「どの世界線がどれくらい“起こりやすいか”」を表す量であり、確率の正体を「自分がどの世界線にいるか分からないこと」として説明しようとする試みです。

また、超伝導回路で観測されたマクロ量子トンネルの遅れ時間については、「歴史的に計られてきた脱出率を、世界が増えていくスピードに翻訳したものだ」として、新しい時間の物差しに格上げしようとしています。

もっとも著者はこの理論が完璧とまでは言っていません。

またこの研究が「平行世界の存在を証明した!」と言っているわけでもありません。

多世界解釈には「複数の現実が本当に存在するのかという存在論の問題」や「そもそも反証しにくいのではないかという指摘」など、厳しい批判が今でも残っていると認めています。

それでもなお、「量子トンネルのような、古典的には禁じられた奇妙な現象を、観測者や環境まで含めた大きな波の分岐として、ひとつの絵にまとめてくれる可能性がある」として、多世界的な見方の“エレガントさ”を評価しているのです。

また「確率とはいったい何なのか」「自分がどの世界線の自分なのか」といった、ふだんは哲学のコーナーに追いやられがちな問いに、量子力学なりの具体的な数字を持ち込んだ点がユニークです。

世界分岐時間という考え方が広まれば、将来、マクロ量子トンネル実験のより精密なデータ解析から、「このくらいのスピードで世界が分かれているとみなすと都合がいい」といった議論が生まれるかもしれません。

そうなれば、量子コンピュータや量子センサーといった技術も、「世界線の束をどううまく扱うか」という新しいストーリーで語られるようになるでしょう。

私たちの毎日は、スマホの電源を入れたり、スイッチを押したり、小さな選択の連続でできています。

今回の理論が正しければ、そうした一つ一つの出来事の裏側で、量子トンネルや測定のたびに、世界はこっそり枝を増やしているのかもしれません。

元論文

On Tunneling in the Quantum Multiverse
https://doi.org/10.48550/arXiv.2601.17856

ライター

川勝康弘: ナゾロジー副編集長。 大学で研究生活を送ること10年と少し。 小説家としての活動履歴あり。 専門は生物学ですが、量子力学・社会学・医学・薬学なども担当します。 日々の記事作成は可能な限り、一次資料たる論文を元にするよう心がけています。 夢は最新科学をまとめて小学生用に本にすること。

編集者

ナゾロジー 編集部

元記事で読む
の記事をもっとみる